Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1187, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216639

RESUMO

Chagas disease affects approximately 7 million people worldwide in Latin America and is a neglected tropical disease. Twenty to thirty percent of chronically infected patients develop chronic Chagas cardiomyopathy decades after acute infection. Identifying biomarkers of Chagas disease progression is necessary to develop better therapeutic and preventive strategies. Circulating microRNAs are increasingly reliable biomarkers of disease and therapeutic targets. To identify new circulating microRNAs for Chagas disease, we performed exploratory small RNA sequencing from the plasma of patients and performed de novo miRNA prediction, identifying potential new microRNAs. The levels of the new microRNAs temporarily named miR-Contig-1519 and miR-Contig-3244 and microRNAs that are biomarkers for nonchagasic cardiomyopathies, such as miR-148a-3p and miR-224-5p, were validated by quantitative reverse transcription. We found a specific circulating microRNA signature defined by low miR-Contig-3244, miR-Contig-1519, and miR-148a-3 levels but high miR-224-5p levels for patients with chronic Chagas disease. Finally, we predicted in silico that these altered circulating microRNAs could affect the expression of target genes involved in different cellular pathways and biological processes, which we will explore in the future.


Assuntos
Doença de Chagas , MicroRNA Circulante , Cardiopatias , MicroRNAs , Humanos , RNA-Seq , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Doença Crônica , Doença de Chagas/diagnóstico , Doença de Chagas/genética
2.
Acta Trop ; 241: 106889, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893830

RESUMO

Trypanosoma cruzi, the agent of Chagas disease, can infect through conjunctive or oral mucosas. Therefore, the induction of mucosal immunity by vaccination is relevant not only to trigger local protection but also to stimulate both humoral and cell-mediated responses in systemic sites to control parasite dissemination. In a previous study, we demonstrated that a nasal vaccine based on a Trans-sialidase (TS) fragment plus the mucosal STING agonist c-di-AMP, was highly immunogenic and elicited prophylactic capacity. However, the immune profile induced by TS-based nasal vaccines at the nasopharyngeal-associated lymphoid tissue (NALT), the target site of nasal immunization, remains unknown. Hence, we analyzed the NALT cytokine expression generated by a TS-based vaccine plus c-di-AMP (TSdA+c-di-AMP) and their association with mucosal and systemic immunogenicity. The vaccine was administered intranasally, in 3 doses separated by 15 days each other. Control groups received TSdA, c-di-AMP, or the vehicle in a similar schedule. We demonstrated that female BALB/c mice immunized intranasally with TSdA+c-di-AMP boosted NALT expression of IFN-γ and IL-6, as well as IFN-ß and TGF-ß. TSdA+c-di-AMP increased TSdA-specific IgA secretion in the nasal passages and also in the distal intestinal mucosa. Moreover, T and B-lymphocytes from NALT-draining cervical lymph nodes and spleen showed an intense proliferation after ex-vivo stimulation with TSdA. Intranasal administration of TSdA+c-di-AMP provokes an enhancement of TSdA-specific IgG2a and IgG1 plasma antibodies, accompanied by an increase IgG2a/IgG1 ratio, indicative of a Th1-biased profile. In addition, immune plasma derived from TSdA+c-di-AMP vaccinated mice exhibit in-vivo and ex-vivo protective capacity. Lastly, TSdA+c-di-AMP nasal vaccine also promotes intense footpad swelling after local TSdA challenge. Our data support that TSdA+c-di-AMP nasal vaccine triggers a NALT mixed pattern of cytokines that were clearly associated with an evident mucosal and systemic immunogenicity. These data are useful for further understanding the immune responses elicited by the NALT following intranasal immunization and the rational design of TS-based vaccination strategies for prophylaxis against T. cruzi.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Vacinas , Feminino , Animais , Camundongos , Administração Intranasal , Imunidade nas Mucosas , Linfonodos , Doença de Chagas/prevenção & controle , Citocinas/metabolismo , Nasofaringe/metabolismo , Mucosa Intestinal/metabolismo , Imunoglobulina G , Camundongos Endogâmicos BALB C
3.
Sci Rep ; 11(1): 22717, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811400

RESUMO

Retinoic acid (RA) is a key signal for the specification of the pancreas. Still, the gene regulatory cascade triggered by RA in the endoderm remains poorly characterized. In this study, we investigated this regulatory network in zebrafish by combining RNA-seq, RAR ChIP-seq and ATAC-seq assays. By analysing the effect of RA and of the RA receptor (RAR) inverse-agonist BMS493 on the transcriptome and on the chromatin accessibility of endodermal cells, we identified a large set of genes and regulatory regions regulated by RA signalling. RAR ChIP-seq further defined the direct RAR target genes in zebrafish, including hox genes as well as several pancreatic regulators like mnx1, insm1b, hnf1ba and gata6. Comparison of zebrafish and murine RAR ChIP-seq data highlighted the conserved direct target genes and revealed that some RAR sites are under strong evolutionary constraints. Among them, a novel highly conserved RAR-induced enhancer was identified downstream of the HoxB locus and driving expression in the nervous system and in the gut in a RA-dependent manner. Finally, ATAC-seq data unveiled the role of the RAR-direct targets Hnf1ba and Gata6 in opening chromatin at many regulatory loci upon RA treatment.


Assuntos
Genômica , Pâncreas/efeitos dos fármacos , Receptores do Ácido Retinoico/agonistas , Transcriptoma , Tretinoína/farmacologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator 1-beta Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Pâncreas/embriologia , Pâncreas/metabolismo , RNA-Seq , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Brain Sci ; 11(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466787

RESUMO

With an increase in consumer demand of video gaming entertainment, the game industry is exploring novel ways of game interaction such as providing direct interfaces between the game and the gamers' cognitive or affective responses. In this work, gamer's brain activity has been imaged using functional near infrared spectroscopy (fNIRS) whilst they watch video of a video game (League of Legends) they play. A video of the face of the participants is also recorded for each of a total of 15 trials where a trial is defined as watching a gameplay video. From the data collected, i.e., gamer's fNIRS data in combination with emotional state estimation from gamer's facial expressions, the expertise level of the gamers has been decoded per trial in a multi-modal framework comprising of unsupervised deep feature learning and classification by state-of-the-art models. The best tri-class classification accuracy is obtained using a cascade of random convolutional kernel transform (ROCKET) feature extraction method and deep classifier at 91.44%. This is the first work that aims at decoding expertise level of gamers using non-restrictive and portable technologies for brain imaging, and emotional state recognition derived from gamers' facial expressions. This work has profound implications for novel designs of future human interactions with video games and brain-controlled games.

5.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165642, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31866417

RESUMO

Studies in mice undergoing acute Trypanosoma cruzi infection and patients with Chagas disease, led to identify several immune-neuroendocrine disturbances and metabolic disorders. Here, we review relevant findings concerning such abnormalities and discuss their possible influence on disease physiopathology.


Assuntos
Doença de Chagas/imunologia , Doenças Metabólicas/imunologia , Células Neuroendócrinas/imunologia , Trypanosoma cruzi/imunologia , Animais , Doença de Chagas/parasitologia , Humanos , Doenças Metabólicas/parasitologia , Células Neuroendócrinas/parasitologia
6.
Med Microbiol Immunol ; 208(5): 651-666, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30413884

RESUMO

Adipose tissue is a target of Trypanosoma cruzi infection being a parasite reservoir during the chronic phase in mice and humans. Previously, we reported that acute Trypanosoma cruzi infection in mice is linked to a severe adipose tissue loss, probably triggered by inflammation, as well as by the parasite itself. Here, we evaluated how infection affects adipose tissue homeostasis, considering adipocyte anabolic and catabolic pathways, the immune-endocrine pattern and the possible repercussion upon adipogenesis. During in vivo infection, both lipolytic and lipogenic pathways are profoundly affected, since the expression of lipolytic enzymes and lipogenic enzymes was intensely downregulated. A similar pattern was observed in isolated adipocytes from infected animals and in 3T3-L1 adipocytes infected in vitro with Trypanosoma cruzi. Moreover, 3T3-L1 adipocytes exposed to plasmas derived from infected animals also tend to downregulate lipolytic enzyme expression which was less evident regarding lipogenic enzymes. Moreover, in vivo-infected adipose tissue reveals a pro-inflammatory profile, with increased leucocyte infiltration accompanied by TNF and IL-6 overexpression, and adiponectin downregulation. Strikingly, the nuclear factor PPAR-γ is strongly decreased in adipocytes during in vivo infection. Attempts to favor PPAR-γ-mediated actions in the adipose tissue of infected animals using agonists failed, indicating that inflammation or parasite-derived factors are strongly involved in PPAR-γ inhibition. Here, we report that experimental acute Trypanosoma cruzi infection disrupts both adipocyte catabolic and anabolic metabolism secondary to PPAR-γ robust downregulation, tipping the balance towards to an adverse status compatible with the adipose tissue atrophy and the acquisition of an inflammatory phenotype.


Assuntos
Tecido Adiposo/patologia , Doença de Chagas/patologia , Homeostase , Adipócitos/parasitologia , Adipócitos/patologia , Adipocinas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Enzimas/metabolismo , Expressão Gênica , Imunidade Celular , Imunidade Humoral , Lipogênese , Lipólise , Camundongos , Trypanosoma cruzi/crescimento & desenvolvimento
7.
Artigo em Inglês | MEDLINE | ID: mdl-31998227

RESUMO

It is well-established that infectious stress activates the hypothalamus-pituitary-adrenal axis leading to the production of pituitary adrenocorticotropin (ACTH) and adrenal glucocorticoids (GCs). Usually, GC synthesis is mediated by protein kinase A (PKA) signaling pathway triggered by ACTH. We previously demonstrated that acute murine Chagas disease courses with a marked increase of GC, with some data suggesting that GC synthesis may be ACTH-dissociated in the late phase of this parasitic infection. Alternative pathways of GC synthesis have been reported in sepsis or mental diseases, in which interleukin (IL)-1ß, prostaglandin E2 (PGE2), and/or cAMP-activated guanine nucleotide exchange factor 2 (EPAC2) are likely to play a role in this regard. Accordingly, we have searched for the existence of an ACTH-independent pathway in an experimental model of a major parasitic disease like Chagas disease, in addition to characterizing potential alternative pathways of GC synthesis. To this end, C57BL/6 male mice were infected with T. cruzi (Tc), and evaluated throughout the acute phase for several parameters, including the kinetic of GC and ACTH release, the adrenal level of MC2R (ACTH receptor) expression, the p-PKA/PKA ratio as ACTH-dependent mechanism of signal transduction, as well as adrenal expression of IL-1ß and its receptor, EPAC2 and PGE2 synthase. Our results reveal the existence of two phases involved in GC synthesis during Tc infection in mice, an initial one dealing with the well-known ACTH-dependent pathway, followed by a further ACTH-hyporesponsive phase. Furthermore, inflamed adrenal microenvironment may tune the production of intracellular mediators that also operate upon GC synthesis, like PGE2 synthase and EPAC2, as emerging driving forces for GC production in the advanced course of Tc infection. In essence, GC production seems to be associated with a biphasic action of PGE2, suggesting that the effect of PGE2/cAMP in the ACTH-independent second phase may be mediated by EPAC2.

8.
Front Microbiol ; 9: 2100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258417

RESUMO

Lactococcus lactis is a promising candidate for the development of mucosal vaccines. More than 20 years of experimental research supports this immunization approach. In addition, 3' 5'- cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that plays a key role in the regulation of diverse physiological functions (potassium and cellular wall homeostasis, among others). Moreover, recent studies showed that c-di-AMP has a strong mucosal adjuvant activity that promotes both humoral and cellular immune responses. In this study, we report the development of a novel mucosal vaccine prototype based on a genetically engineered L. lactis strain. First, we demonstrate that homologous expression of cdaA gen in L. lactis is able to increase c-di-AMP levels. Thus, we hypothesized that in vivo synthesis of the adjuvant can be combined with production of an antigen of interest in a separate form or jointly in the same strain. Therefore, a specifically designed fragment of the trans-sialidase (TScf) enzyme from the Trypanosoma cruzi parasite, the etiological agent of Chagas disease, was selected to evaluate as proof of concept the immune response triggered by our vaccine prototypes. Consequently, we found that oral administration of a L. lactis strain expressing antigenic TScf combined with another L. lactis strain producing the adjuvant c-di-AMP could elicit a TS-specific immune response. Also, an additional L. lactis strain containing a single plasmid with both cdaA and tscf genes under the Pcit and Pnis promoters, respectively, was also able to elicit a specific immune response. Thus, the current report is the first one to describe an engineered L. lactis strain that simultaneously synthesizes the adjuvant c-di-AMP as well as a heterologous antigen in order to develop a simple and economical system for the formulation of vaccine prototypes using a food grade lactic acid bacterium.

9.
Oncotarget ; 8(35): 58003-58020, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28938533

RESUMO

Prophylactic and/or therapeutic vaccines have an important potential to control Trypanosoma cruzi (T. cruzi)infection. The involvement of regulatory/suppressor immune cells after an immunization treatment and T. cruzi infection has never been addressed. Here we show that a new trans-sialidase-based immunogen (TSf) was able to confer protection, correlating not only with beneficial changes in effector immune parameters, but also influencing populations of cells related to immune control. Regarding the effector response, mice immunized with TSf showed a TS-specific antibody response, significant delayed-type hypersensitivity (DTH) reactivity and increased production of IFN-γ by CD8+ splenocytes. After a challenge with T. cruzi, TSf-immunized mice showed 90% survival and low parasitemia as compared with 40% survival and high parasitemia in PBS-immunized mice. In relation to the regulatory/suppressor arm of the immune system, after T. cruzi infection TSf-immunized mice showed an increase in spleen CD4+ Foxp3+ regulatory T cells (Treg) as compared to PBS-inoculated and infected mice. Moreover, although T. cruzi infection elicited a notable increase in myeloid derived suppressor cells (MDSC) in the spleen of PBS-inoculated mice, TSf-immunized mice showed a significantly lower increase of MDSC. Results presented herein highlight the need of studying the immune response as a whole when a vaccine candidate is rationally tested.

10.
Brain Behav Immun ; 65: 284-295, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28666938

RESUMO

Earlier studies from our laboratory demonstrated that acute experimental Trypanosoma cruzi infection promotes an intense inflammation along with a sepsis-like dysregulated adrenal response characterized by normal levels of ACTH with raised glucocorticoid secretion. Inflammation was also known to result in adrenal cell apoptosis, which in turn may influence HPA axis uncoupling. To explore factors and pathways which may be involved in the apoptosis of adrenal cells, together with its impact on the functionality of the gland, we carried out a series of studies in mice lacking death receptors, such as TNF-R1 (C57BL/6-Tnfrsf1a tm1Imx or TNF-R1-/-) or Fas ligand (C57BL/6 Fas-deficient lpr mice), undergoing acute T. cruzi infection. Here we demonstrate that the late hypercorticosterolism seen in C57BL/6 mice during acute T. cruzi infection coexists with and hyperplasia and hypertrophy of zona fasciculata, paralleled by increased number of apoptotic cells. Apoptosis seems to be mediated mainly by the type II pathway of Fas-mediated apoptosis, which engages the mitochondrial pathway of apoptosis triggering the cytochrome c release to increase caspase-3 activation. Fas-induced apoptosis of adrenocortical cells is also related with an exacerbated production of intra-adrenal cytokines that probably maintain the late supply of adrenal hormones during host response. Present results shed light on the molecular mechanisms dealing with these phenomena which are crucial not only for the development of interventions attempting to avoid adrenal dysfunction, but also for its wide occurrence in other infectious-based critical illnesses.


Assuntos
Córtex Suprarrenal/fisiopatologia , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Receptor fas/fisiologia , Córtex Suprarrenal/microbiologia , Animais , Apoptose/imunologia , Apoptose/fisiologia , Caspase 3/metabolismo , Citocinas/metabolismo , Proteína Ligante Fas/metabolismo , Proteína Ligante Fas/fisiologia , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Trypanosoma cruzi/patogenicidade , Fator de Necrose Tumoral alfa/metabolismo , Receptor fas/metabolismo
11.
Front Microbiol ; 7: 704, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242726

RESUMO

Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease.

12.
Front Microbiol ; 7: 348, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047464

RESUMO

Chagas disease is caused by the flagellate protozoan Trypanosoma cruzi, affecting millions of people throughout Latin America. The parasite dampens host immune response causing modifications in diverse lymphoid compartments, including the thymus. T. cruzi trans-sialidase (TS) seems to play a fundamental role in such immunopathological events. This unusual enzyme catalyses the transference of sialic acid molecules from host glycoconjugates to acceptor molecules placed on the parasite surface. TS activity mediates several biological effects leading to the subversion of host immune system, hence favoring both parasite survival and the establishment of chronic infection. This review summarizes current findings on the roles of TS in the immune response during T. cruzi infection.

13.
Sensors (Basel) ; 15(8): 19124-39, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26251906

RESUMO

This paper presents preliminary polarization measurements and systematic-error characterization of the Thirty Gigahertz Instrument receiver developed for the QUIJOTE experiment. The instrument has been designed to measure the polarization of Cosmic Microwave Background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. Two kinds of linearly polarized input signals have been used as excitations in the polarimeter measurement tests in the laboratory; these show consistent results in terms of the Stokes parameters obtained. A measurement-based systematic-error characterization technique has been used in order to determine the possible sources of instrumental errors and to assist in the polarimeter calibration process.

14.
Rev Sci Instrum ; 86(2): 024702, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25725865

RESUMO

This paper presents the analysis, design, and characterization of the thirty gigahertz instrument receiver developed for the Q-U-I Joint Tenerife experiment. The receiver is aimed to obtain polarization data of the cosmic microwave background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. A comprehensive analysis of the theory behind the proposed receiver is presented for a linearly polarized input signal, and the functionality tests have demonstrated adequate results in terms of Stokes parameters, which validate the concept of the receiver based on electronic phase switching.

15.
Brain Behav Immun ; 45: 219-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25483139

RESUMO

We previously showed that Trypanosomacruzi infection in C57BL/6 mice results in a lethal infection linked to unbalanced pro- and anti-inflammatory mediators production. Here, we examined the dynamics of CD4(+)Foxp3(+) regulatory T (Treg) cells within this inflammatory and highly Th1-polarized environment. Treg cells showed a reduced proliferation rate and their frequency is progressively reduced along infection compared to effector T (Teff) cells. Also, a higher fraction of Treg cells showed a naïve phenotype, meanwhile Teff cells were mostly of the effector memory type. T. cruzi infection was associated with the production of pro- and anti-inflammatory cytokines, notably IL-27p28, and with the induction of T-bet and IFN-γ expression in Treg cells. Furthermore, endogenous glucocorticoids released in response to T. cruzi-driven immune activation were crucial to sustain the Treg/Teff cell balance. Notably, IL-2 plus dexamethasone combined treatment before infection was associated with increased Treg cell proliferation and expression of GATA-3, IL-4 and IL-10, and increased mice survival time. Overall, our results indicate that therapies aimed at specifically boosting Treg cells, which during T. cruzi infection are overwhelmed by the effector immune response, represent new opportunities for the treatment of Chagas disease, which is actually only based on parasite-targeted chemotherapy.


Assuntos
Doença de Chagas/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Trypanosoma cruzi/imunologia , Adrenalectomia , Animais , Cardiomiopatia Chagásica/imunologia , Cardiomiopatia Chagásica/patologia , Doença de Chagas/patologia , Corticosterona/sangue , Dexametasona/farmacologia , Modelos Animais de Doenças , Fator de Transcrição GATA3/efeitos dos fármacos , Fator de Transcrição GATA3/imunologia , Glucocorticoides/farmacologia , Interferon gama/efeitos dos fármacos , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-2/farmacologia , Interleucina-4/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Miocárdio/patologia , Fenótipo , Linfócitos T Reguladores/efeitos dos fármacos , Células Th1/efeitos dos fármacos
16.
Ann N Y Acad Sci ; 1262: 27-36, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22823432

RESUMO

Double-positive (DP) CD4(+) CD8(+) T cells normally represent a thymic subpopulation that is developed in the thymus as a precursor of CD4(+) or CD8(+) single-positive T cells. Recent evidence has shown that DP cells with an activated phenotype can be tracked in secondary lymph organs. The detection of an activated DP population in the periphery, a population that expresses T cell receptors unselected during thymic negative selection in murine models of Trypanosoma cruzi infection and in humans with Chagas disease, raise new questions about the relevance of this population in the pathogenesis of this major parasitic disease and its possible link with immunoendocrine alterations.


Assuntos
Doença de Chagas/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/fisiopatologia , Sulfato de Desidroepiandrosterona/imunologia , Modelos Animais de Doenças , Glândulas Endócrinas/imunologia , Humanos , Hidrocortisona/imunologia , Ativação Linfocitária , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo
17.
Ann N Y Acad Sci ; 1153: 264-71, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19236349

RESUMO

The cytokine-mediated stimulation of the hypothalamus-pituitary-adrenal (HPA) axis is relevant for immunoregulation and survival during bacterial endotoxemia and certain viral infections. However, only limited information is available regarding the effect of endogenous glucocorticoids on parasitic diseases. Here, we discuss evidence that the increased levels of corticosterone that occur following Trypanosoma cruzi infection in mice is an endocrine response that protects the host by impeding an excessive production of pro-inflammatory cytokines. Comparative studies between susceptible C57Bl/6J and resistant Balb/c mice indicate that the predisposition to the disease depends on the appropriate timing and magnitude of the activation of the HPA axis. However, this endocrine response also results in thymus atrophy and depletion of CD4(+)CD8(+) by apoptosis. On the other hand, using tumor necrosis factor (TNF)-receptor knockout mice, we found that TNF-alpha plays a complex role during this disease; it is involved in the mediation of cardiac tissue damage but it also contributes to prolonged survival. Taken together, this evidence indicates that a subtle balance between endocrine responses and cytokine production is necessary for an efficient defense against T. cruzi infection.


Assuntos
Doença de Chagas/imunologia , Sistemas Neurossecretores/imunologia , Animais , Doença de Chagas/microbiologia , Corticosterona/metabolismo , Modelos Animais de Doenças , Humanos , Timo/imunologia , Timo/microbiologia , Timo/patologia , Trypanosoma cruzi/fisiologia
18.
J Endocrinol ; 190(2): 495-503, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16899582

RESUMO

The cytokine-mediated stimulation of the hypothalamus-pituitary-adrenal (HPA) axis is relevant for survival during bacterial endotoxemia and certain viral infections. However, only limited information is available regarding the effects of endogenous glucocorticoids on parasite diseases. We have studied this issue using, as a model, C57Bl/6 and Balb/c mice infected with Trypanosoma cruzi, the causal agent of Chagas' disease. These two mouse strains differ in the susceptibility to infection with the parasite. An intense stimulation of the HPA-axis was observed 3 weeks after infection in both strains, but glucocorticoid levels were already increased two- to threefold in the less susceptible Balb/c strain during the first week. Blockade of glucocorticoid receptors with the glucocorticoid antagonist RU486, starting on day 10 after infection, partially reversed the thymic atrophy and decreased the number of CD4(+)CD8(+) thymocytes without affecting parasitemia and the number of inflammatory foci in the heart. However, tumor necrosis factor-alpha blood levels were increased in infected mice of both strains treated with RU486. Furthermore, the blockade of glucocorticoid receptors accelerated death in C57Bl/6J mice and increased lethality to 100% in Balb/c mice. The results obtained represent the first evidence that an endocrine host response that is coupled to the immune process can strongly affect the course of a parasite infection.


Assuntos
Glucocorticoides/fisiologia , Timo/patologia , Trypanosoma cruzi , Tripanossomíase/imunologia , Adrenalectomia , Animais , Animais Lactentes , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Corticosterona/sangue , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Mifepristona/farmacologia , Miocárdio/patologia , Parasitemia , Receptores de Glucocorticoides/antagonistas & inibidores , Tripanossomíase/sangue , Tripanossomíase/patologia , Fator de Necrose Tumoral alfa/análise
19.
J Bacteriol ; 188(3): 1159-64, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16428420

RESUMO

During Bacillus subtilis sporulation, the transient engulfment defect of spoIIB strains is enhanced by spoVG null mutations and suppressed by spoVS null mutations. These mutations have opposite effects on expression of the motility regulon, as the spoVG mutation reduces and the spoVS mutation increases sigmaD-directed gene expression, cell separation, and autolysis. Elevating sigmaD activity by eliminating the anti-sigma factor FlgM also suppresses spoIIB spoVG, and both flgM and spoVS mutations cause continued expression of the sigmaD regulon during sporulation. We propose that peptidoglycan hydrolases induced during motility can substitute for sporulation-specific hydrolases during engulfment. We find that sporulating cells are heterogeneous in their expression of the motility regulon, which could result in phenotypic variation between individual sporulating cells.


Assuntos
Bacillus subtilis/genética , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica , Regulon/fisiologia , Fator sigma/fisiologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Flagelos/metabolismo , Mutação , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
20.
J Gen Virol ; 82(Pt 8): 1935-1939, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11458000

RESUMO

Structural studies have implicated Cys(9), Cys(104) and Cys(207) of simian virus 40 (SV40) Vp1 in disulfide bond formation. Recently, we have shown the three cysteines to be essential for disulfide linkage of Vp1 complexes in vitro. Here, the role of the three cysteines was explored during the course of SV40 infection. Single-, double- and triple-mutant Vp1 at Cys(9), Cys(104) and Cys(207) continued to localize to the nuclei of transfected CV-1 cells and to bind DNA, but showed a range of abilities to form plaques. Only mutants containing the Cys(9)-->Ser change showed defects in plaque formation. Single mutants at Cys(9) formed small plaques; mutants at Cys(9). Cys(104), Cys(9). Cys(207) and Cys(9). Cys(104). Cys(207) formed no plaques. All three isolated revertants contained back-mutations at the Vp1 Cys(9) codon. These results further confirm the involvement of the three Vp1 cysteines in protein-protein interactions during virus assembly. Cys(9) is critical for production of wild-type infectious virions, whereas Cys(104) and Cys(207) play secondary roles.


Assuntos
Cisteína/química , Vírus 40 dos Símios/química , Proteínas Estruturais Virais/química , Vírion/química , Replicação Viral , Animais , Linhagem Celular , Cisteína/genética , Dissulfetos/química , Mutagênese Sítio-Dirigida , Vírus 40 dos Símios/patogenicidade , Transfecção , Ensaio de Placa Viral , Proteínas Estruturais Virais/genética , Vírion/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...